Exam. Code
 211001
 Subject Code :

M.Sc. (Mathematics) $1^{\text {st }}$ Semester COMPLEX ANALYSIS

Paper-Math-552

Time Allowed-3 Hours]

[Maximum Marks-100
Note :-Attempt five questions in all, selecting at least one from each Section. All questions carry equal marks.

SECTION-A

1. Find a necessary and sufficient condition for a complex valued function to be analytic.
2. (a) Define complex line integral. Evaluate the integral

$$
\int_{-2+i}^{5+3 i} z^{2} d z
$$

(b) State and prove Cauchy's integral formula for first order derivative.

SECTION-B

3. (a) State and prove Cauchy's inequality.
(b) If $\mathrm{w}=\mathrm{f}(\mathrm{z})$ represents a conformed transformation of a domain D in the z -plane into a domain D^{\prime} of the w-plane then show that $f(z)$ is an analytic function of z in D^{\prime}.

4240(2118)/DAG-10924
4. (a) Find the bilinear transformation which maps $\mathrm{z}=1, \mathrm{i},-1$ respectively onto $\mathrm{w}=\mathrm{i}, 0,-\mathrm{i}$. Also for this transformation find the images of $|\mathrm{z}| \leq 1$.
(b) Show that the circle of convergence of the power series $f(z)=\sum_{n=0}^{\infty} z^{n}$ is a natural boundary.

SECTION-C

5. (a) State and prove Toylor's theorem.
(b) State and prove Maximum modulus principle.
6. (a) If $f(z)$ is analytic within and on a closed contour C except at a finite number of poles and is not zero on C then show that $N-P=\frac{1}{2 \pi i} \cdot \int_{C}^{f^{\prime}(z)} \frac{d z}{f(z)}$, where N is the number of zero and P is the number of poles inside C.
(b) Apply Rouche's theorem to determine the number of roots of the equation $z^{8}-4 z^{5}+z^{2}-1=0$ that lie inside the circle $|z|=1$.

SECTION-D

7. (a) Define residue at infinity. Find the residue of $\frac{z^{3}}{z^{2}-1}$ at $\mathrm{z}=\infty$.
(b) Evaluate $\int_{0}^{\pi} \frac{\mathrm{ad} \phi}{\mathrm{a}^{2}+\sin ^{2} \phi}$.
8. (a) Show by contour integration that $\int_{0}^{\infty} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}=\frac{\pi}{2}$.
(b) Prove that $\int_{0}^{\infty} \frac{\log x}{\left(1+x^{2}\right)^{2}} \mathrm{dx}=\frac{\pi}{4}$, using as a contour a large semicircle in the upper half plane indented at the origin.
