a2zpapers.com

Exam. Code : 211001 Subject Code : 3835

M.Sc. (Mathematics) 1st Semester COMPLEX ANALYSIS Paper—Math-552

Time Allowed—3 Hours]

[Maximum Marks—100

Note :— Attempt five questions in all, selecting at least one from each Section. All questions carry equal marks.

SECTION-A

- 1. Find a necessary and sufficient condition for a complex valued function to be analytic.
- 2. (a) Define complex line integral. Evaluate the integral $\int_{1}^{5+3i} 2$

 $\int_{-2+i}^{5+3i} z^2 dz$

(b) State and prove Cauchy's integral formula for first order derivative.

SECTION-B

- 3. (a) State and prove Cauchy's inequality.
 - (b) If w=f(z) represents a conformed transformation of a domain D in the z-plane into a domain D' of the w-plane then show that f(z) is an analytic function of z in D'.

4240(2118)/DAG-10924

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

1

a2zpapers.com

- 4. (a) Find the bilinear transformation which maps z =1, i,-1 respectively onto w = i, 0, -i. Also for this transformation find the images of | z | ≤ 1.
 - (b) Show that the circle of convergence of the power

series $f(z) = \sum_{n=0}^{\infty} z^{n!}$ is a natural boundary.

SECTION—C

- 5. (a) State and prove Toylor's theorem.
 - (b) State and prove Maximum modulus principle.
- 6. (a) If f(z) is analytic within and on a closed contour C except at a finite number of poles and is not zero on

C then show that $N - P = \frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz$, where N is the number of zero and P is the number of poles inside C.

(b) Apply Rouche's theorem to determine the number of roots of the equation z⁸-4z⁵ + z²-1 =0 that lie inside the circle | z | =1.

4240(2118)/DAG-10924

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

2

a2zpapers.com

SECTION-D

7. (a) Define residue at infinity. Find the residue of $\frac{z^3}{z^2-1}$ at $z = \infty$.

(b) Evaluate
$$\int_{0}^{\pi} \frac{a \, d\phi}{a^2 + \sin^2 \phi}$$

8. (a) Show by contour integration that $\int_{0}^{\infty} \frac{dx}{1+x^{2}} = \frac{\pi}{2}.$

(b) Prove that
$$\int_{0}^{\infty} \frac{\log x}{(1+x^2)^2} dx = \frac{\pi}{4}$$
, using as a contour a

large semicircle in the upper half plane indented at the origin.

4240(2118)/DAG-10924

1800

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab